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REACTIVITIES OF GUAIACYL AND SYRINGYL LIGNIN UWEL 
PHENOLS TOWARDS OXIDATION WITH OXYGEN-ALKALI 

Vagif S. Sultanovl and Adrian F. A. Wal l is  
Div is ion o f  Forest Products, CSIRO, Pr ivate Bag 10, 

Clayton, V i c to r i a  3168, Austral ia.  

Dedicated t o  the memory o f  Professor Kyost i  V. Sarkanen. 

ABSTRACT 
A range o f  guaiacyl and sy r ingy l  l i g n i n  model phenols was 

t reated w i th  oxygen i n  1M potassium hydroxide so lut ion a t  70'C. 
The reactions were monitored by high performance l i q u i d  
chromatography and gas chromatography-mass spectrometry. The 
reactions o f  the phenols, which followed pseudo-f i rs t -order  
k inet ics ,  were fas te r  f o r  sy r i ngy l  than f o r  guaiacyl phenols. For 
the various 4-substituted syr ingols the r e a c t i v i t i e s  were i n  
decreasing order CHz-syringyl > CHOH-CH3 *I: C3H7" > CHzOH > COOH > 
CHO > CO-CHJ. Reaction o f  1-guaiacylpropane i n  1H POtaSSiUm 
hydroxide w i th  oxygen gave products of oxidat ive sc iss ion of the 
aromatic r i n g  and no dehydrodimer, whereas a t  pH 11.5 Some 
dehydrodimer was among the react ion products. V a n i l l y l  a lcohol  and 
sy r ingy l  a lcohol  y ie lded v a n i l l i n  and syringaldehyde, 
respectively, as minor oxidat ion products. However, the react ion 
s i t e s  f o r  the ser ies o f  phenols were generally the aromatic r ings 
rather than the side-chains. Oxidation o f  a l ka l i ne  so lut ions o f  
the phenols w i th  oxygen a t  1.0 MPa pressure and 110 and 150'C gave 
s im i la r  mixtures o f  acids and hydroxyacids. 

*Present address: Leningrad Forest Technical Academy, I n s t i t u t s k y  
per 5, Leningrad 194018, USSR. 
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292 SULTANOV AND WALLIS 

The appl icat ion o f  oxygen i n  a l k a l i  media t o  wood pulps is 
assuming an increasingly important r61e i n  commercial 

d e l i g n i f i c a t i o n  processes.1 Under a l ka l i ne  conditions, oxygen 

reacts w i th  both the aromatic r ings and side-chain structures i n  

l ign in .2 I n  the former case, react ion o f  l i g n i n  phenolic u n i t s  can 

give products from oxidat ive coupling,J side-chain displacement4 

and r i n g  scission,5 whereas non-phenolic aromatic u n i t s  are 

r e l a t i v e l y  stable t o  oxygen-alkali conditions.8 The side-chain 

structures i n  l i g n i n  are also react ive t o  oxygen-alkali especial ly 

when there are carbon-carbon double bonds present, e.g. i n  

s t i lbene structures.’ The i n i t i a l  products formed by react ion o f  

oxygen wi th  l i g n i n  models are hydroperoxides,2 and the course o f  

f u r the r  transformations o f  these intermediates i s  pH dependent.8~9 

Although the mechanism o f  oxidat ion o f  l i g n i n  models w i th  

oxygen-alkali i s  generally understood, l ess  i s  known about the 

comparative r e a c t i v i t i e s  o f  l i g n i n  structures, p a r t i c u l a r l y  those 

per ta in ing t o  hardwood l i gn ins .  K ra tz l  e t  al.3 showed t h a t  the 

rate o f  oxygen uptake f o r  a l ka l i ne  so lut ions o f  various l i g n i n  

models a t  70°C decreased i n  the order catechol > sy r i ngy l  > 
guaiacyl > b iguaiacyl  un i ts .  I n  addition, the presence o f  an a l k y l  
subst i tuent para t o  the phenolic hydroxyl group accelerated the 

oxygen uptake. Gierer e t  al.10 found t h a t  sy r i ngy l  8-aryl  ethers 

were more react ive t o  oxygen than were the corresponding guaiacyl 

models. The s t ructure o f  side-chains i n  l i g n i n  model phenols 
a f fec ts  t h e i r  r e a c t i v i t y  towards oxygen: f o r  guaiacyl models, 

oxygen uptake was found t o  be i n  decreasing order v a n i l l y l  a lcohol  

(If) > apocynol ( le )  > v a n i l l i n  ( I d )  > acetoguaiacone ( 1 6 1 . 4  

Ljunggren and Johanssonll have recent ly shown t h a t  f o r  guaiacyl 

structures, which are considered t o  be important i n  res idual  k r a f t  

pulp l ign ins,  the order o f  r e a c t i v i t y  with oxygen-alkali was 
s t i lbene > v i n y l  ether > 8-aryl ether. 
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GUAIACYL AND SYRINGYL LIGNIN MODEL PHENOLS 29 3 

Results from l i g n i n  model compound studies have been 

reinforced by studies o f  oxidat ion o f  i so la ted  l ign ins.  K r a t z l  

e t  a l . 3  found t h a t  an a l ka l i ne  so lut ion o f  a hardwood k r a f t  l i g n i n  

a t  7D'C absorbed more oxygen a t  a greater ra te than d i d  a pine 

k r a f t  l i g n i n .  I n  a re la ted study, L a i  and Sarkanenl2 noted t h a t  

hardwood l i g n i n s  were more react ive t o  peroxyacetic a c i d  than were 

softwood l i gn ins ;  t h i s  they a t t r i bu ted  t o  the ox idat ion r e a c t i v i t y  

o f  sy r i ngy l  groups being greater than tha t  o f  guaiacyl groups. 

Despite the general recogni t ion t h a t  sy r i ngy l  compounds are 

more react ive t o  a l ka l i ne  oxygen oxidat ion than are guaiacyl 

compounds, there i s  l i t t l e  comparative informat ion about the 

r e a c t i v i t i e s  o f  structures w i th  d i f f e r e n t  side-chains. I n  the 

present study, we have reacted a range o f  l i g n i n  models w i th  

oxygen under a l ka l i ne  conditions and have analysed the products by 

high performance l i q u i d  chromatography (HPLC) and by gas 

chromatography-mass spectrometry (GC-MS). 

A range o f  guaiacyl and sy r ingy l  models cha rac te r i s t i c  o f  

l i g n i n  structures i n  wood and pulps was studied. Reaction o f  the 

l i g n i n  model phenols w i th  oxygen was ca r r i ed  out a t  10°C by 

maintaining a constant f low o f  the gas through the a l ka l i ne  

solut ions.  This allowed the phenols t o  react w i th  so lut ions 

saturated w i th  oxygen a t  atmospheric pressure. Because o f  the 

i n s o l u b i l i t y  o f  some phenols i n  sodium hydroxide, e.g. 

1-syringylpropane (2a), solut ions o f  1M potassium hydroxide were 
used f o r  the ser ies o f  reactions rather than the more widely used 

sodium hydroxide. The course o f  the reactions was monitored by 

measuring the amounts o f  s t a r t i n g  phenols remaining and the 

amounts o f  ce r ta in  products formed. I n  every case, the 
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0 2 4 6 8 10 12 

Time (h )  

FIGURE 1. First-order ra te  p l o t  o f  the react ion o f  l-guaiacyl- 
propane ( la )  i n  1M KOH w i th  oxygen a t  70°C. 

disappearance o f  the phenols followed pseudo-first-order k inet ics ,  

as shown f o r  4-n-propylguaiacol i n  Figure 1. Lunggren found t h a t  

reactions o f  phenolic s t i l b e n e , l l * l J  enol  ether," 8-aryl e t h e r l l  

and a l k y l "  structures with oxygen-alkali a lso followed pseudo- 

f i rs t -order  k inet ics .  

1-Syringylpropane (2a) reacted rap id l y  w i th  oxygen a t  70'C; 
a f t e r  3 h there was only a small amount o f  the phenol remaining. 

Reaction o f  1-guaiacylpropane ( la )  was less  rapid, and the 
guaiacyl dimer 3 i n  35% aqueous ethanol reacted only s lowly w i th  

oxygen (Figure 2, Table 1). The inc lus ion o f  ethanol in the 
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1-syringylpropane (2a)  

disyringylmethane (4b) 
syringic acid (2b) 
acetosyringone (2c) 
syringaldehyde (2dl 

1-syringylpropanol (28) 
syringyl alcohol ( 2 f )  

- 
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FIGURE 2. Reaction of lignin model phenols in 1M KOH with oxygen 
at 70’C. Phenols remaining ( X I :  - + - dimer 3 
(in 35% aqu. ethanol); - x - 1-guaiacylpropane (la); - o - 1-syringylpropane (2a) .  

TABLE 1 

Observed Pseudo-First-Order Rate Constants for Oxidation of Lignin 
Model Phenols in 1M Potassium Hydroxide with Oxygen at 70°C. 

Guaiacyl compound Syringyl compound 103kobs 
(min-1) 

1-guaiacylpropane (la) 

dimer ( 3 ) + +  
diguaiacylmethane (4a) 

vanillic acid ( l b )  
acetoguaiacone ( l c )  

vanillin (Id) 
apocynol ( le )  

vanillyl alcohol (If 1 

1.28 
0.793+ 
0.460 
3.17 * 

* 
* 

1.04 
0.642 

+Reaction in 50% aq. acetonitrile at 60°C and pH 11.5 according 

++Reaction in 35% aq. ethanol 
*No reaction after 32 h 

to Ljunggren**le 
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GUAIACYL AND S Y R I N G Y L  L I G N I N  MODEL PHENOLS 297 

react ion mixture o f  dimer 3 was necessary f o r  i t s  dissolut ion.  

Reaction o f  1-guaiacylalkanes w i th  oxygen-alkali has previously 

been shown t o  be slower i n  the presence o f  organic solvents.14~15 

Oxidation of phenols l a  and 2a gave i n  each case, a f t e r  HPLC on a 

reversed phase column, a s ing le peak w i th  a short  re tent ion time, 
i nd i ca t i ve  o f  hydrophi l ic  mater ia l ,  8. g. organic acids, formed by 

ox idat ive scission o f  the aromatic r ing.  This was confirmed a f t e r  

GC-MS examination o f  the react ion mixtures, which were shown t o  

contain a large number o f  components, c h i e f l y  a range o f  d ibasic 

acids and hydroxyacids s im i la r  t o  those iso la ted from creosol ls 

(see Experimental). 

There was a notable absence o f  the dehydrodimer 3 among the 

oxidat ion products of 1-guaiacylpropane ( la) .  Although compound 3 
was reported t o  be the primary product o f  ox idat ion of l a  i n  0.2M 

sodium hydroxide a t  70"C,J14 l a t e r  work" showed t h a t  dimerisat ion 

t o  3 d i d  not take place under those conditions. San Clemente 

et aZ.8 found t h a t  the dehydrodimer o f  1-guaiacylethane was formed 

i n  a l ka l i ne  oxygen oxidations only a t  pH values below 13. This 
they a t t r i bu ted  t o  the i n s t a b i l i t y  o f  the i n i t i a l l y - fo rmed  

hydroperoxide a t  lower a l k a l i n i t i e s ,  producing peroxy-radicals 

which subsequently gave the dehydrodimer by ortho-ortho coupling. 

When treated w i th  oxygen i n  50% aqueous a c e t o n i t r i l e  a t  pH 

11.5 and 60'C according t o  the procedure o f  Ljunggren,18 

1-guaiacylpropane ( l a )  gave the  dimer 3 as one o f  the products 

(Figure 3 ) .  The rates o f  ox idat ion o f  the phenol and formation o f  

the dimer were greater when the  experiment was carr ied out i n  a 

polyethylene b o t t l e  than when i n  a glass f lask.  However, the rates 

were considerably slower than those reported ea r l i e r . l 4#18  The 

pseudo-first-order ra te constant f o r  the react ion ca r r i ed  out a t  

pH 11.5 was less than t h a t  obtained when the  react ion was 

performed i n  1M potassium hydroxide (Table 1) .  
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100 

Q c 40 
0 

0 

I dimer 37 - --X--x----x- 

0 2 4 6 8 10 12 

Time at 60°c ( h )  

FIGURE 3. Reaction o f  1-guaiacylpropane ( l a )  i n  50% aqu. 
a c e t o n i t r i l e  a t  pH 11.5 and 60°C i n  - x - glass, 
and - o - polyethylene vessels. 

Of the l i g n i n  model phenols tested, disyringylmethane (4b) 

reacted w i th  oxygen-alkali most rapidly,  and considerably fas te r  

than diguaiacylmethane (4a) (Table 1). I n  both cases, the phenols 

were converted t o  hydrophi l ic  mater ia l  which had a short  re tent ion 

time on the reversed phase HPLC column. There was no i nd i ca t i on  

tha t  diary lethanols o r  dibenzophenones were among the products. 

V a n i l l i c  ac id  ( lb) ,  acetoguaiacone ( l c )  and v a n i l l i n  ( Id )  

were stable t o  the a l ka l i ne  oxygen conditions, and i n  each case no 

react ion occurred a f t e r  32 h (HPLC and GC-MS examination). K r a t z l  

et al.4 have reported tha t  compounds lc and Id i n  0.2M sodium 

hydroxide so lut ion absorbed oxygen over a 24 h period a t  70'C. 

However, i n  a k i n e t i c  study o f  the autoxidat ion o f  v a n i l l i n ,  

Wallick and Sarkanens found t h a t  r e l a t i v e l y  high temperatures 

(130 t o  170'C) were required f o r  react ion w i th  a l ka l i ne  oxygen t o  

occur. 
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GUAIACYL AND S Y R I N G Y L  LIGNIN MODEL PHENOLS 299 

Syringic ac id  (2b) was react ive t o  a l ka l i ne  oxygen 

(Table 11,  g iv ing  products which were more hydrophi l ic  than was 

the s t a r t i n g  mater ia l .  GC-MS examination showed the products t o  be 

mixtures o f  a l i p h a t i c  acids and hydroxy-acids. Acetosyringone (2c) 

reacted very slowly wi th  oxygen, whereas syringaldehyde (2d) had a 

react ion ra te  c loser t o  t h a t  o f  syr ing ic  ac id  (Table 1). I n  both 
cases, syr ing ic  ac id  was not among the react ion products, and the 

mixtures had HPLC peaks w i th  shor t  re tent ion times, i n d i c a t i v e  o f  

ring-opened oxidised mater ia l ,  

The models w i th  a-hydroxy substituents, apocynol ( l e )  and 

i t s  sy r i ngy l  analogue 26, had s im i la r  react ion rates t o  the 

4-alkylphenols la and 2a respectively, and the s y r i n g y l  compound 

was s i g n i f i c a n t l y  more reactive. Gierer e t  a1.10 have previously 

shown a sy r ingy l  a-hydroxy-R-ether model t o  be more react ive t o  

oxygen-alkali than i t s  guaiacyl counterpart. Neither 

acetoguaiacone (lc) nor acetosyringone (2c) were found as react ion 

products o f  le and 2e, respectively: the products were acids 

a r i s i n g  from oxidat ive r i n g  cleavage. 

V a n i l l y l  a lcohol  ( I f )  and sy r ingy l  a lcohol  (2 f )  were less 

react ive t o  oxygen-alkali than t h e i r  a-methyl analogues le and 2e 

(Table 1 ) .  For these models, side-chain oxidat ion t o  the aldehydes 

v a n i l l i n  ( l d )  and syringaldehyde (2d) occurred as minor reactions 

(Figure 41, although the corresponding acids lb and 2b were not 

among the react ion products. A f te r  ac id i f i ca t i on ,  HPLC analyses o f  

the react ion mixtures were ca r r i ed  out without delay, as the 

phenols le and 2e reacted slowly w i th  a c i d i f i e d  methanol t o  give 

the methyl ethers If  and 2f respect ively.19~2o 

Alka l ine solut ions o f  the phenols were a lso t reated w i th  

oxygen under pressure and a t  elevated temperatures (110 and 

150'C). The products, i d e n t i f i e d  by GC-MS a f t e r  conversion t o  

t h e i r  TMS der ivat ives,  were s i m i l a r  f o r  a l l  oxidat ion condi t ions 

and f o r  a l l  the compounds examined. These products were a l i p h a t i c  

acids resu l t i ng  from severe oxidat ion o f  t he  phenols. 
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FIGURE 4. Reactions o f  l i g n i n  model phenols i n  1M KOH w i th  
oxygen a t  70'C and formation o f  aldehydes. - o - I f  and Id, - x - 2 f  and 2d. 

From Table 1 i t  fol lows t h a t  4-substituted syr ingols  show 

r e a c t i v i t i e s  t o  oxygen-alkali a t  70°C i n  the  decreasing order 

CHn-syringyl > CHOH-CHs 2! C3H7n > CH20H > COOH > CHO > CO-CHJ. 

Guaiacyl phenols are less react ive t o  oxygen-alkali than are 

sy r ingy l  phenols. The r e a c t i v i t i e s  o f  the phenols can be 

correlated wi th  t h e i r  e lectron donating powers; greater electron 

densi t ies i n  the aromatic r ings renders them more susceptible t o  

oxidat ive cleavage between the two carbon atoms bearing oxygenated 

substituents. Under the react ion condi t ions used i n  the present 

study, oxidat ive cleavage o f  the aromatic r i ngs  appears t o  be a 

more favoured react ion pathway than is oxidat ion o f  the 

side-chains. A be t te r  i nd i ca t i on  o f  the r e a c t i v i t i e s  o f  the models 

t o  oxygen-alkali is obtained by monitoring the disappearance o f  
s t a r t i n g  mater ia ls (as i n  the present study) ra ther  than by 

measurement o f  the oxygen absorbed (common i n  e a r l i e r  work). 
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Unless otherwise specified, the l i g n i n  models 1-4 were 

obtained from commercial sources, and were checked f o r  p u r i t y  by 

melt ing points, GC and HPLC, and by spectroscopic means. 

1-Guaiacylpropane and 1-syringylpropane ( l a  and 2a) were the 

products o f  hydrogenation o f  eugenol and 4-a l ly lsyr ingol  

respect ively i n  ethanol w i th  Pd-C as a cata lyst .  Apocynol and 
1-syringylethanol ( l e  and 28) were prepared by sodium borohydride 

reduction o f  l c  and 2c respectively. 4,4’-Di-r~propyl-6,6’- 

b iguaiacol  ( 3 )  was obtained by oxidat ion of 1-guaiacylpropane ( la )  
with hydrogen peroxide-peroxidase according t o  Pew’s procedure.21 

Disyringylmethane (4b) was prepared by react ion o f  

2,6-dimethoxyphenol wi th  formaldehyde i n  a l k a l i  by the  method o f  

Steel ink.  2 2  

Attempted preparation o f  diguaiacylmethane (4a) from 

v a n l l l y l  a lcohol  by heating w i th  2.5M sodium hydroxide according 

t o  the  method o f  Pearl23 gave mostly unreacted s t a r t i n g  ma te r ia l  

(HPLC examination). A be t te r  resu l t  was obtained by re f l ux ing  the 

mixture f o r  1 h i n  a f l a s k  t o  which an a i r  condensor was attached 

t o  al low the l i b e r a t i o n  o f  formaldehyde. 

A so lu t ion o f  v a n i l l y l  a lcohol  (4.0 9) i n  2.5M sodium 

hydroxide (100 mL) was ref luxed under ni t rogen f o r  1 h i n  a f l a s k  

f i t t e d  w i th  an a i r  condenser. A f te r  cooling, the so lu t i on  was 

saturated w i th  carbon dioxide and extracted w i th  ether. The 

ext ract  was d r ied  and the ether was evaporated t o  g ive an o i l  

(3.6 g), which displayed three major TLC spots. Adsorption o f  the 

o i l  onto a column o f  s i l i c a  ge l  and e l u t i o n  w i th  hexane:chloroform 
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3:l gave a so l id ,  which c rys ta l l i sed  from hexane-ether as needles 

of diguaiacylmethane (710 mg) m.p. 107-8'C. ( L i t . 2 3  m.p. 108-9'C). 

PMR 8 (CDC13) 3.62 ( S ,  8, 2 x OCH3, ArCH2At-1, 5.4 ( S ,  2, 2 X OH) 

and 6.6-7.3 (m, 6, ArH). 

on o f  Ugnja models 

( a )  A t  atmospheric pressure Oxygen was slowly bubbled through a 

so lut ion o f  a l i g n i n  model compound (30 mmol) i n  1M potassium 

hydroxide so lut ion (10 mL) i n  a pear-shaped f l a s k  immersed i n  a 

thermostatted water bath a t  70'C. Al iquots (1.0 mL) were taken a t  

in terva ls ,  and the so lut ion was a c i d i f i e d  t o  pH = 3 with 10M 

hydrochloric acid and made up t o  5 mL wi th  methanol p r i o r  t o  HPLC 
analysis. Estimation o f  the s t a r t i n g  mater ia ls and react ion 

products was accomplished w i th  the use o f  external  standards. 

A l ternat ive ly ,  the e n t i r e  react ion mixture was a c i d i f i e d  w i th  10M 

hydrochloric acid t o  pH = 3, freeze-dried, and extracted 

successively wi th  methyl e t h y l  ketone and acetone. A f t e r  

evaporation o f  the extracts, the residue was s i l y l a t e d  w i th  a 

mixture o f  N,O-bis(trimethylsily1)-trifluoroacetamide (200 pL), 

chlorotr imethyls i lane (10 pL) and pyr id ine (500 pL) a t  70'C f o r  

1 h before analysis by GC. 

A so lu t ion o f  dimer 3 ( 5  mg) i n  ethanol (3.5 mL) and 

1M potassium hydroxide (6.5 mL) was treated wi th  a slow stream o f  

oxygen a t  70'C, and the react ion was monitored as above. 

Oxidation o f  1-guaiacylpropane i n  50% aqueous a c e t o n i t r i l e  

w i th  oxygen a t  pH 11.5 and 60°C was carr ied out according t o  the 

procedure o f  Ljunggren.17 Al iquots (1.0 mL) were pe r iod i ca l l y  

removed, a c i d i f i e d  t o  pH 3, and analysed by HPLC. 

The logarithm o f  the percentage o f  t he  phenol reactants 

remaining was p lo t ted  against react ion time, and gave in every 
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case a s t ra igh t  l i n e .  From the slope o f  t h i s  l i ne ,  t he  
pseudo-first-order ra te constant was determined. 

( b )  In pressure vessels Solutions o f  the phenols i n  1.25M sodium 

hydroxide were placed i n  180 mL s t e e l  vessels and charged w i th  

1.0 MPa oxygen. The vessels were placed i n  a cradle i n  an a i r  bath 

and were rotated a t  temperatures o f  110 and 150'C f o r  periods o f  
up t o  3 h. The react ion mixtures were a c i d i f i e d  w i th  

10M hydrochloric ac id  t o  pH r 3 and were analysed as above. 

HPLC was carr ied out on a system comprising a Waters WISP 

7108 autosampler and Model 481 var iable wavelength detector, and a 

Spectra-Physics SP8700 solvent de l ivery  system and SP4100 

computing integrator.  The column used was a Waters Radial-PAK 

car t r idge (100 nun x 8 mm) containing a RESOLVE 5p C-18 packing. 

The HPLC conditions were as fo l lows: i n j e c t i o n  vol., 20 pL; 

solvent, methano1:water 80:20-50:50 del ivered a t  1.0 mL/min; 

detection, UV a t  280 nm (other wavelengths were a lso used f o r  

i d e n t i f i c a t i o n  o f  products). 

GC and GC-MS data were obtained with Hewlett-Packard 5830A 

and 5995 instruments, respectively, w i th  v i t reous s i l i c a  c a p i l l a r y  

columns, an SE-30 wall-coated open tubular  column (25 m x 0.33 mm 
I D )  and a BP1 bonded phase column (25 m 
Glass Engineering, Melbourne) and flame 

the 5830A instrument. S p l i t  r a t i o :  100: 

i n j e c t o r  and detector temperatures: 250 

80°C f o r  5 min, then 3'12 min-1 t o  240'C 

x 0.2 mm I D )  ( S c i e n t i f i c  

i on i sa t i on  detect ion f o r  

; c a r r i e r  gas: helium; 

C; column temperature: 

Acids i d e n t i f i e d  as t h e i r  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



304 SULTANOV AND WALLIS 

TMS esters/ethers were ( re ten t i on  time, min. ): l a c t i c  (11.6), 

g l y c o l i c  ( 12.1 1, l e v u l i n i c  ( 13.71, 2-hydroxybutanoic ( 14.3), 

o x a l i c  (14.31, 3-hydroxypropanoic (14.81, 3-hydroxybutanoic 

(15.6), 2-hydroxypentanoic (17.0), malonic (17.3), maleic (21.7), 

succ in ic  (22.41, methylsuccinic (23.01, g l y c e r i c  (23.61, fumaric 

(24.0), t a r t r o n i c  (26.4), ma l ic  (31.1) and 2,3-dihydroxysuccinic 

(37.2). 
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